Received 29 September 2005 Accepted 14 October 2005

Online 22 October 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hyeon Mo Cho, Jeffrey S. Moore and Scott R. Wilson*

University of Illinois, School of Chemical Sciences, 505 South Mathews Avenue, Urbana, Illinois 61801, USA

Correspondence e-mail: srwilson@uiuc.edu

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (C–C) = 0.005 Å R factor = 0.026 wR factor = 0.068 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(3-Iodophenyl)[2-(3-iodophenylimino)-1-methylpropylidene]amine

In the crystal structure of the title compound, $C_{16}H_{14}I_2N_2$, the molecule lies on a crystallographic inversion center and hence the two imine groups are mutually *trans*.

Comment

Molecules containing the 1,4-diaza-1,3-butadiene skeleton are interesting because of their versatile coordination behavior and the properties of their metal complexes (van Koten & Vrieze, 1982). The two imine groups of the title compound, (I), are planar. The angle between the planes of the diimine group and each benzene ring is $89.3 (2)^{\circ}$.

Experimental

The title compound was prepared by the reaction of 2,3-butanedione with 2 equivalents of 3-iodoaniline in the presence of *p*-toluene-sulfonic acid in toluene solvent using Dean–Stark apparatus (Hell-dörfer *et al.*, 2003). The product was separated by silica gel column chromatography (ethyl acetate/*n*-hexane, 1:20) with 3% triethyl-amine and was recrystallized from diethyl ether at room temperature. Single crystals suitable for X-ray diffraction were grown at room temperature by evaporation of a diethyl ether solution. ¹H NMR (500 MHz, THF-*d*₈): δ 7.45 (*m*, 2H), 7.20 (*t*, 2H), 7.12 (*t*, 2H), 6.78 (*m*, 2H), 2.11 (*s*, 6H). ¹³C NMR (126 MHz, THF-*d*₈): δ 169.4, 153.4, 133.5, 131.4, 128.4, 118.9, 95.0, 15.3. HRMS calculated for C₁₆H₁₄I₂N₂: 487.9247; found: 487.9247.

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved SHELXTL (Bruker, 2001) plot showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. The unlabeled atoms are related by the symmetry operator (2 - x, -y, -z).

Crystal data

C₁₆H₁₄I₂N₂ $M_r = 488.09$ Orthorhombic, *Pbca* a = 11.481 (2) Å b = 9.2619 (19) Å c = 15.723 (3) Å V = 1672.0 (6) Å³ Z = 4 $D_x = 1.939$ Mg m⁻³

Data collection

Siemens SMART/Platform CCD diffractometer ω scans Absorption correction: integration (*SHELXTL/XPREP*; Bruker, 2001) $T_{min} = 0.496, T_{max} = 0.754$ 13409 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.068$ S = 0.991530 reflections 92 parameters H-atom parameters constrained Mo $K\alpha$ radiation Cell parameters from 950 reflections $\theta = 3.1-25.9^{\circ}$ $\mu = 3.75 \text{ mm}^{-1}$ T = 193 (2) K Tabletr, yellow 0.22 × 0.20 × 0.08 mm

1530 independent reflections 1067 reflections with $I > 2\sigma(I)$ $R_{int} = 0.059$ $\theta_{max} = 25.4^{\circ}$ $h = -13 \rightarrow 13$ $k = -10 \rightarrow 11$ $l = -18 \rightarrow 18$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0352P)^2 \\ &+ 0.4421P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} &= 0.001 \\ \Delta\rho_{\text{max}} &= 0.51 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\text{min}} &= -0.68 \text{ e } \text{ Å}^{-3} \end{split}$$

Methyl H-atom positions, $R-CH_3$, were optimized by rotation about the R-C bonds with idealized C-H (0.98 Å). The remaining H atoms were included as riding (C-H = 0.95 Å). Methyl H atom U_{iso} values were assigned as 1.5 times U_{eq} of the carrier atom; the remaining $U_{iso}(H)$ values were assigned as 1.2 times $U_{eq}(carrier)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *XCIF* (Bruker, 2001).

The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants NSF CHE 95-03145 and NSF CHE 03-43032 from the National Science Foundation. This work was supported by the Postdoctoral Fellowship Program of the Korea Science and Engineering Foundation (KOSEF, 2004).

References

Bruker (2001). SAINT (Version 6.22), SHELXTL (Version 6.12), SMART (Version 5.625) and XCIF. Bruker AXS Inc., Madison, Wisconsin, USA.
Helldörfer, M., Backhaus, J. & Alt, H. G. (2003). Inorg. Chim. Acta, 351, 34–42.
Koten, G. van & Vrieze, K. (1982). Adv. Organomet. Chem. 21, 151–239.